It's not clear how you would like to plot a model with so many dependents. Plotting the results of your logistic regression Part 2: Continuous by continuous interaction. Save my name, email, and website in this browser for the next time I comment. }, 0); Keep in mind, we already turned Gender into a Factor with labeled levels, so we can refer to the actual names of the levels (instead of numbers). In what happens if my dog eats tomcat mouse poison Ploting interaction plot in ggplot using +1sd/-1sd following logistic regression. plot multiple roc curves r ggplot. How can I ggplot a logistic function correctly using predict or inv.logit? The data is from the package {MASS} and the table that contains the full data set is called (leuk). For example, you may not actually have any cases with X2 value 1SD above the mean, in which case maybe you just want to put in max(X2) for the high case instead. Why don't math grad schools in the U.S. use entrance exams? This form is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply. All males in the data set are assigned a 0 and all females are assigned a 1. The argument method of function with the value "glm" plots the logistic regression curve on top of a ggplot2 plot. There are multiple methods for producing this plot. For the final example of the chapter, we are going to look at plotting interactions with 2 categorical predictors. Use stargazer() to visualize your results. R line graphs, values outside plot area. Applications of Logistic Regression with R It helps in image segmentation and categorisation. The line that is drawn diagonally to denote 50-50 partitioning of the graph. $('tr.header').parent('thead').parent('table').addClass('table table-condensed'); Using ggplot2 Here the above exercise is repeated with the same data, but using the ggplot2 R package to display the results and run the regressions. What are the weather minimums in order to take off under IFR conditions? . This time, however,we need to do this for BOTH predictor variables (gender & tutor) because we have 2 categorical variables. For the next 3 methods, we are going to specify the centered Work Ethic IV to range from -2.5 to 2.5, increasing by .5, but for the centered IQ IV, we will show 3 different theoretical ways to choose our levels. Does a beard adversely affect playing the violin or viola? For even more ggplot fun, refer to Chapter 10 or this awesome ggplot Cheat Sheet. can you redo the solution using the full data set? In our example this translates to the probability of a county . Again, well put X1 on the x-axis. In general, does anyone have any tips for visualizing a logit model with multiple predictors? . library(ggplot2) #plot logistic regression curve ggplot (mtcars, aes(x=hp, y=vs)) + geom_point (alpha=.5) + stat_smooth (method="glm", se=FALSE, method.args = list (family=binomial)) Note that this is the exact same curve produced in the previous example using base R. Feel free to modify the style of the curve as well. 1. It's actually far simpler to do this with ggplot: However, to recreate your target plot in base R graphics, you could do something like: Now for the main caveat: since you already have the raw survival times, you should probably run this as a survival analysis, not as logistic regression, since you have lost a lot of statistical power by converting to a binary outcome. This time, well use the same model, but plot the interaction between the two continuous predictors instead, which is a little weirder (hence part 2). This code can take a few minutes to run, which is why I have not included it in the coded section of this chapter. The syntax in R to calculate the coefficients and other parameters related to multiple regression lines is : var <- lm (formula, data = data_set_name) summary (var) lm : linear model. Not good! However, plotting a binary response this way, even with jitter, is not very appealing. Is there an industry-specific reason that many characters in martial arts anime announce the name of their attacks? The tutorial covers ggplot2 and ggpubr packages for visualization and tidyr and dplyr packages for data wrangling. Interesting! the whole range for X1, group a, and the representative values we picked for X2), and then when you run predict() on it, for each row in the data frame it will generate the predicted value for your DV from the model you saved. Im sorry, I realized I missed a chunk of the post! Typical choices are high (1SD above the mean), medium (the mean), and low (1SD below the mean) X2. This tutorial will cover some aspects of plotting modeled data within the context of multilevel (or 'mixed-effects') regression models. If the curve is more close to the line, lower the performance of the classifier, which is no better than a mere random guess. If anyone wants to learn data visualization and data manipulation using R, then I have made some tutorials for it. And, most importantly, less typing which means fewer errors. Plot time! If you use the ggplot2 code instead, it builds the legend for you automatically. To subscribe to this RSS feed, copy and paste this URL into your RSS reader. It's not really possible to give a working example as an answer without a bit more sample data than this. I Denote p k(x i;) = Pr(G = k |X = x i;). Making statements based on opinion; back them up with references or personal experience. Hot Network Questions By clicking Accept all cookies, you agree Stack Exchange can store cookies on your device and disclose information in accordance with our Cookie Policy. }. This is my first time trying to plot a logistic model in R, and I'm not sure how to go about visualizing the results. - MrFlick 2. ggplot2 show legends with geom_abline and geom_smooth. Logistic regression is a technique used in the field of statistics measuring the difference between a dependent and independent variable with the guide of logistic function by estimating the different occurrence of probabilities. Logistic regression models in ggplot2 [duplicate] Ask Question Asked 5 years, 8 months ago. Correctness of logistic regression in Vowpal Wabbit? Here's a nice tutorial . Does English have an equivalent to the Aramaic idiom "ashes on my head"? It's free to sign up and bid on jobs. Previously, I wrote that R dummy codes automatically. Why should you not leave the inputs of unused gates floating with 74LS series logic? What is the use of NTP server when devices have accurate time? Whatever you decide, I recommend checking to make sure the representative values youre plugging in actually make sense given your data. The result is a logit-transformed probability as a linear relation to the predictor. This upcoming section is going to look at how you would run/plot a regression with 1 continuous predictor variable and 1 categorical predictor variable. Last time, we ran a nice, complicated logistic regression and made a plot of the a continuous by categorical interaction. When running a regression in R, it is likely that you will be interested in interactions. ggplot2: Logistic Regression - plot probabilities and regression line. Asking for help, clarification, or responding to other answers. Did the words "come" and "home" historically rhyme? rev2022.11.7.43014. For basic statistics, there are about 9 small chapters covering concepts like distributions, p-value, variance, statistics tests (parametric and non-parametric), and . What's the proper way to extend wiring into a replacement panelboard? It works using the ggplot () function specifying the data to be plotted, and you can then add features to the plot using functions like geom_point (). What are some tips to improve this product photo? These are the default settings with respect to all aesthetic elements. The expand.grid() function is a quick and easy way to make a data frame out of all possible combinations of the variables provided. 503), Fighting to balance identity and anonymity on the web(3) (Ep. First, load some packages. For a full APA style graph, error bars would be expected. Edit Since your response variable is binary, it might not really be interesting to plot it on one of your axes. Will it have a bad influence on getting a student visa? You can also do 4 or 5 lines instead of just 3, if you want. Next, compute the equations for each line in logit terms. I Given the rst input x 1, the posterior probability of its class being g 1 is Pr(G = g 1 |X = x 1). In this vid, we look at how to PLOT PREDICTED PROBABILITIES USING GGPLOT2 for LOGIT REGRESSION IN R! Why doesn't this unzip all my files in a given directory? 2018-04-02 In this post we are plotting an interaction for a logistic regression. window.buildTabsets("TOC"); You may be wondering where I got these funky letter/number combinations that translate into colors. More accurate calculations of mean/error/etc. Here's an example of how to do it with the ggplot2 package When the migration is complete, you will access your Teams at stackoverflowteams.com, and they will no longer appear in the left sidebar on stackoverflow.com. The important thing to show is the proportion of Zwetstimme at each of the 5 levels of atomenergie. IQ x Gender (Male/Female) as predictors of GPA. The logistic regression model can be presented in one of two ways: l o g ( p 1 p) = b 0 + b 1 x. or, solving for p (and noting that the log in the above equation is the natural log) we get, p = 1 1 + e ( b 0 + b 1 x) where p is the probability of y occurring given a value x. ** Note - the error bars in this graph are very hard to see, because we have very little error in our simulated data set. Youll need to actually calculate the predicted probabilities yourself. Plotting Predicted Probabilities with Categorical Data (logistic regression). Space - falling faster than light? Search for jobs related to Plot logistic regression in r ggplot2 or hire on the world's largest freelancing marketplace with 21m+ jobs. Now, in terms of what were learning from this graph - we can see the interaction effects a lot more clearly. Similar to the last example, we are going to now create factors with dummy codes. The approach towards plotting the regression line includes the following steps:- Create the dataset to plot the data points Use the ggplot2 library to plot the data points using the ggplot () function Use geom_point () function to plot the dataset in a scatter plot You have to enter all of the information for it (the names of the factor levels, the colors, etc.) $(document).ready(function () { To compute multiple regression lines on the same graph set the attribute on basis of which groups should be formed to shape parameter. quantile regression plots in r. fire emblem randomizer yune london to sheffield cheap train tickets. Plot logistic regression using parameters in ggplot2. I have figured it out! That would be a better for for. Thanks! I'm new to Stack Overflow and wasn't aware of Cross Validated. All the data needed to make the plot is typically be contained within the dataframe supplied to the ggplot () itself or can be supplied to respective geoms. What is this political cartoon by Bob Moran titled "Amnesty" about? Can plants use Light from Aurora Borealis to Photosynthesize? Great, thank you both for the input. In this vid, we look at how to PLOT PREDICTED PROBABILITIES USING GGPLOT2 for LOGIT REGRESSION IN R! If you are working with IQ, a drug, or age - numbers are relevant and are useful to pick! Concealing One's Identity from the Public When Purchasing a Home. Site design / logo 2022 Stack Exchange Inc; user contributions licensed under CC BY-SA. Multiple logistic regression analyses, one for each pair of outcomes: One problem with this approach is that each analysis is potentially run on a different sample. Counting from the 21st century forward, what is the last place on Earth that will get to experience a total solar eclipse? Now we will create your model. Site design / logo 2022 Stack Exchange Inc; user contributions licensed under CC BY-SA. Can customize every aspect of the graphs (color, size of text, data points), To avoid problems of multicollinearity! 504), Mobile app infrastructure being decommissioned. The second noticeable feature is that you can keep enhancing the plot by adding more layers (and themes) to an existing plot created using the ggplot () function. LS0tDQp0aXRsZTogJ0NoYXB0ZXIgMTM6IFBsb3R0aW5nIFJlZ3Jlc3Npb24gSW50ZXJhY3Rpb25zJw0KYXV0aG9yOiAiQ2FsbGllIFNpbHZlciINCm91dHB1dDoNCiAgaHRtbF9kb2N1bWVudDoNCiAgICBjb2RlX2Rvd25sb2FkOiB5ZXMNCiAgICBmb250c2l6ZTogOHB0DQogICAgaGlnaGxpZ2h0OiB0ZXh0bWF0ZQ0KICAgIG51bWJlcl9zZWN0aW9uczogeWVzDQogICAgdGhlbWU6IGNlcnVsZWFuDQogICAgdG9jOiB5ZXMNCiAgICB0b2NfZmxvYXQ6DQogICAgICBjb2xsYXBzZWQ6IG5vDQoNCi0tLQ0KDQpgYGB7ciBzZXR1cCwgaW5jbHVkZT1GQUxTRX0NCg0Ka25pdHI6Om9wdHNfY2h1bmskc2V0KGVjaG8gPSBUUlVFKQ0KYGBgDQoNCiMgQmFzaWNzIA0KVGhlIGZvbGxvd2luZyBjaGFwdGVyIHdpbGwgaW5jbHVkZToNCg0KLSBCYXNpYyBpbmZvcm1hdGlvbiBhYm91dCBpbnRlcmFjdGlvbnMgYW5kIHNpbXBsZSBzbG9wZXMgDQotIEJhY2tncm91bmQgdG8gcGxvdHRpbmcgaW50ZXJhY3Rpb25zIGluIFIgDQotIEEgcmVhbC1saWZlIGV4YW1wbGUgDQotIENvZGUgdG8gc2ltdWxhdGUgZGF0YSBzZXQgIA0KLSBDb250aW51b3VzIFggQ29udGludW91cyBSZWdyZXNzaW9uOiBjb2RlIGFuZCBpbnRlcnByZXRhdGlvbiANCi0gTm9taW5hbCBYIENvbnRpbnVvdXMgUmVncmVzc2lvbjogY29kZSBhbmQgaW50ZXJwcmV0YXRpb24gDQotIE5vbWluYWwgWCBOb21pbmFsIFJlZ3Jlc3Npb246IGNvZGUgYW5kIHRyYW5zbGF0aW9uIA0KDQojIyBXaGF0IGlzIGFuIGludGVyYWN0aW9uPw0KKipJbnRlcmFjdGlvbjoqKiBXaGVuIHRoZSBlZmZlY3Qgb2Ygb25lIGluZGVwZW5kZW50IHZhcmlhYmxlIGRpZmZlcnMgYmFzZWQgb24gdGhlIGxldmVsIG9yIG1hZ25pdHVkZSBvZiBhbm90aGVyIGluZGVwZW5kZW50IHZhcmlhYmxlIA0KDQoqICp5KiA9IEEgKyBCICsgQSpCIA0KICAgICsgKioqeSoqKiA9IGRlcGVuZGVudCB2YXJpYWJsZSANCiAgICArICoqQSoqID0gaW5kZXBlbmRlbnQgdmFyaWFibGUgDQogICAgKyAqKkIqKiA9IGluZGVwZW5kZW50IHZhcmlhYmlsZSANCiAgICArICoqQSoqKioqQioqID0gaW50ZXJhY3Rpb24gYmV0d2VlbiBBIGFuZCBCIA0KICAgIA0KRm9yIG1vcmUgaW5mb3JtYXRpb24gYWJvdXQgaW50ZXJhY3Rpb25zIGluIHJlZ3Jlc3Npb246ICAgICAgDQpbQ2xpY2sgaGVyZV0oaHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS91cmw/c2E9dCZyY3Q9aiZxPSZlc3JjPXMmc291cmNlPXdlYiZjZD0zJnZlZD0wYWhVS0V3aUZyc3EzOFlqVEFoVUJVQ1lLSFE5QkRlQVFGZ2dzTUFJJnVybD1odHRwcyUzQSUyRiUyRnd3dy5yZXNlYXJjaGdhdGUubmV0JTJGZmlsZS5Qb3N0RmlsZUxvYWRlci5odG1sJTNGaWQlM0Q1NTVlM2VmNjVmN2Y3MTBjN2E4YjQ1YTMlMjZhc3NldEtleSUzREFTJTI1M0EyNzM3ODE1Mzk0NDI2ODglMjU0MDE0NDIyODYwMTMyMDYmdXNnPUFGUWpDTkdBSFZ0Rm5RTDNQanAtbGZCQm1jQ2JGNnZwa2cmc2lnMj1QbjJMQUJITXJWNE94dDBxcGNuT2dRJmNhZD1yamEpIGZvcg0KKkphY2NhcmQgJiBUdXJyaXNpIDIwMDMgKiBJbnRlcmFjdGlvbiBFZmZlY3RzIGluIE11bHRpcGxlIFJlZ3Jlc3Npb24NCg0KIyMgV2hhdCBpcyBhIHNpbXBsZSBzbG9wZT8NCg0KLSBBIHNpbXBsZSBzbG9wZSBpcyBhIHJlZ3Jlc3Npb24gbGluZSBhdCBvbmUgbGV2ZWwgb2YgYSBwcmVkaWN0b3IgdmFyaWFibGUgDQoNCi0gVGhpbmsgb2Ygc2ltcGxlIHNsb3BlcyBhcyB0aGUgdmlzdWFsaXphdGlvbiBvZiBhbiBpbnRlcmFjdGlvbiANCg0KKipIb3cgZG8gd2UgcGxvdCB0aGVzZSB0aGluZ3MgaW4gUj8uLi4qKiANCg0KIyMgSW50ZXJhY3Rpb24gUGxvdHRpbmcgUGFja2FnZXMgDQpXaGVuIHJ1bm5pbmcgYSByZWdyZXNzaW9uIGluIFIsIGl0IGlzIGxpa2VseSB0aGF0IHlvdSB3aWxsIGJlIGludGVyZXN0ZWQgaW4gaW50ZXJhY3Rpb25zLiBUaGUgZm9sbG93aW5nIHBhY2thZ2VzIGFuZCBmdW5jdGlvbnMgYXJlIGdvb2QgcGxhY2VzIHRvIHN0YXJ0LCBidXQgdGhlIGZvbGxvd2luZyBjaGFwdGVyIGlzIGdvaW5nIHRvIHRlYWNoIHlvdSBob3cgdG8gbWFrZSBjdXN0b20gaW50ZXJhY3Rpb24gcGxvdHMuIA0KDQoqICoqbG0oKSBmdW5jdGlvbjoqKiB5b3VyIGJhc2ljIHJlZ3Jlc3Npb24gZnVuY3Rpb24gdGhhdCB3aWxsIGdpdmUgeW91IGludGVyYWN0aW9uIHRlcm1zIA0KKiAqKnN0YXJnYXplciBwYWNrYWdlLCBzdGFyZ2F6ZXIoKSBmdW5jdGlvbjoqKiBwcmV0dHkgc3VtbWFyeSBvZiByZWdyZXNzaW9uIHJlc3VsdHMgDQoqICoqcm9ja2NoYWxrIHBhY2thZ2UsIHBsb3RTbG9wZXMoKSBmdW5jdGlvbjoqKiBxdWljayBhbmQgYmFzaWMgZ3JhcGggb2Ygc2ltcGxlIHNsb3Blcw0KDQoqKldoeSBjYW4ndCB3ZSBqdXN0IHVzZSB0aGVzZSBwYWNrYWdlcz8uLi4qKiANCg0KIyMgQmVuZWZpdHMgb2YgQ3VzdG9tIEludGVyYWN0aW9uIFBsb3RzIA0KIyMjIyBVc2luZyAqKmVmZmVjdHMqKiBhbmQgKipnZ3Bsb3QyKioNCg0KLSBGdWxsIGNvbnRyb2wgb3ZlciB3aGF0IHlvdSdyZSBwbG90dGluZyAoaS5lLiB4IGxldmVsIG9mIHggdmFyaWFibGUpDQotIE1vcmUgYWNjdXJhdGUgY2FsY3VsYXRpb25zIG9mIG1lYW4vZXJyb3IvZXRjLg0KLSBDYW4gZW50ZXIgaW4gb3duIHZhbHVlcyBmb3IgY29uZmlkZW5jZSBpbnRlcnZhbHMsIHN0YW5kYXJkIGVycm9yIGJhcnMsIGV0Yy4NCi0gQ2FuIGN1c3RvbWl6ZSBldmVyeSBhc3BlY3Qgb2YgdGhlIGdyYXBocyAoY29sb3IsIHNpemUgb2YgdGV4dCwgZGF0YSBwb2ludHMpDQoNCldlIGdvIGZyb20gInF1aWNrICYgZGlydHkiIHNpbXBsZSBzbG9wZSBwbG90cyB0byAicHJldHR5ICYgY3VzdG9taXphYmxlIiBncmFwaHMNCg0KIyMgVGhlIFBhY2thZ2VzIFlvdSBOZWVkDQoNCklmIHlvdSBkb24ndCBhbHJlYWR5IGhhdmUgdGhlc2UgcGFja2FnZXMgaW5zdGFsbGVkLCB1c2UgdGhlIGZvbGxvd2luZyBmdW5jdGlvbnMgdG8gZG8gc286IA0KYGBgIHtyLCBtZXNzYWdlPUZBTFNFLCBlY2hvPVRSVUV9DQoNCiNpbnN0YWxsLnBhY2thZ2VzKCJjYXIiKSAjQW4gZXh0cmVtZWx5IHVzZWZ1bC9pbi1kZXB0aCByZWdyZXNzaW9uIHBhY2thZ2UgDQojaW5zdGFsbC5wYWNrYWdlcygic3RhcmdhemVyIikgI1Byb2R1Y2VzIGVhc3kgdG8gcmVhZCByZWdyZXNzaW9uIHJlc3VsdHMgKHNpbWlsYXIgdG8gd2hhdCB5b3UgZ2V0IGluIFNQU1MpDQojaW5zdGFsbC5wYWNrYWdlcygiZWZmZWN0cyIpICNXZSB3aWxsIHVzZSB0aGlzIHRvIGNyZWF0ZSBvdXIgaW50ZXJhY3Rpb25zIA0KI2luc3RhbGwucGFja2FnZXMoImdncGxvdDIiKSAjT3VyIGluY3JlZGlibHkgcG93ZXJmdWwgYW5kIHZlcnNhdGlsZSBncmFwaGluZyBwYWNrYWdlIA0KDQpgYGANCioqT25lIGxhc3QgdGhpbmcgYmVmb3JlIHdlIGdldCBzdGFydGVkLi4uKiANCg0KSWYgdGhlIHdvcmRzICJpbnRlcmFjdGlvbiIgb3IgImxpbmVhciBtb2RlbCIgYXJlIHNvdW5kaW5nIGEgbGl0dGxlIGZvcmVpZ24sIGNoZWNrIG91dCBbQ2hhcHRlciAxMl0oaHR0cDovL2FkZW1vcy5wZW9wbGUudWljLmVkdS9DaGFwdGVyMTIuaHRtbCkgZm9yIGFuIGF3ZXNvbWUgcmVncmVzc2lvbiByZWZyZXNoZXIhIQ0KDQojIENvbnRpbnVvdXMgeCBDb250aW51b3VzIFJlZ3Jlc3Npb24NCioqSVEgYW5kIFdvcmsgRXRoaWMgYXMgUHJlZGljdG9ycyBvZiBHUEEqKg0KDQpGb3IgYWxsIHRoZSBleGFtcGxlcyBpbiB0aGlzIGNoYXB0ZXIsIHdlIGFyZSBhY3R1YWxseSBnb2luZyB0byBzaW11bGF0ZSBvdXIgb3duIGRhdGEuIFRoaXMgZWxpbWluYXRlcyB0aGUgbmVlZCBmb3IgZG93bmxvYWRpbmcgYSBkYXRhIHNldCAvIGNhbGxpbmcgaW4gZGF0YS4gDQoNCiMjIFNpbXVsYXRlIHlvdXIgZGF0YSANCiAgDQpgYGAge3IsIG1lc3NhZ2U9RkFMU0UsIGVjaG89VFJVRX0NCmxpYnJhcnkoY2FyKSAjRXZlbiB0aG91Z2ggd2UgYWxyZWFkeSBpbnN0YWxsZWQgImNhciIsIHdlIGhhdmUgdG8gdGVsbCBSIHdlIHdhbnQgaXQgdG8gbG9hZCB0aGlzIHBhY2thZ2UgZm9yIHVzIHRvIHVzZSAJDQojWW91IGNhbiBjaG9vc2Ugd2hhdGV2ZXIgIyB5b3Ugd2FudCBmb3IgdGhlIHNlZWQ7IHRoaXMgaXMgZm9yIHJhbmRvbWl6YXRpb24gb2YgeW91ciBkYXRhIHNldA0Kc2V0LnNlZWQoMTUwKQ0KI0xldCdzIG1ha2Ugb3VyIGRhdGEgc2V0IHdpbGwgaGF2ZSAyNTAgcGFydGljaXBhbnRzIChuKSwgcGVyaGFwcyBjb2xsZWdlIHN0dWRlbnRzISAgICAgDQpuIDwtIDI1MAkNCiNVbmlmb3JtIGRpc3RyaWJ1dGlvbiBvZiB3b3JrIGV0aGljIChYKSBmcm9tIDEtNSAoMSA9IHBvb3Igd29yayBldGhpYywgNSA9IGdyZWF0IHdvcmsgZXRoaWMpIA0KWCA8LSBybm9ybShuLCAyLjc1LCAuNzUpCQ0KI1dlIHdhbnQgYSBub3JtYWwgZGlzdHJpYnV0aW9uIG9mIElRIChaKQ0KI0kgZml4ZWQgdGhlIG1lYW4gb2YgSVEgdG8gMTUgc28gdGhhdCB0aGUgcmVncmVzc2lvbiBlcXVhdGlvbiB3b3JrcyByZWFsaXN0aWNhbGx5LCBTRCA9IDE1IA0KWiA8LSBybm9ybShuLCAxNSwgMTUpCQ0KI1dlIHRoZW4gY3JlYXRlIFkgdXNpbmcgYSByZWdyZXNzaW9uIGVxdWF0aW9uIChhZGRpbmcgYSBiaXQgb2YgcmFuZG9tIG5vaXNlKSAgICANClkgPC0gLjcqWCArIC4zKlogKyAyLjUqWCpaICsgcm5vcm0obiwgc2QgPSA1KQ0KI1RoaXMgY29kZSBpcyBoZXJlIHNvIHRoYXQgWSAoR1BBKSBpcyBjYXBwZWQgYXQgNC4wICh0aGUgbG9naWNhbCBtYXggZm9yIEdQQSkNClkgPSAoWSAtIG1pbihZKSkgLyAobWF4KFkpIC0gbWluKFkpKSo0DQojRmluYWxseSwgd2UgcHV0IG91ciBkYXRhIHRvZ2V0aGVyIHdpdGggdGhlIGRhdGEuZnJhbWUoKSBmdW5jdGlvbiANCkdQQS5EYXRhIDwtIGRhdGEuZnJhbWUoR1BBPVksIFdvcmsuRXRoaWM9WCwgSVE9WikJDQpgYGANCg0KIyMgQ2VudGVyIHlvdXIgaW5kZXBlbmRlbnQgdmFyaWFibGVzIA0KKipXaHkgZG8gd2UgY2VudGVyIG91ciB2YXJpYWJsZXM/KioNCg0KLSBUbyBhdm9pZCBwcm9ibGVtcyBvZiBtdWx0aWNvbGxpbmVhcml0eSEgV2hlbiBhIG1vZGVsIGhhcyBtdWx0aWNvbGxpbmVhcml0eSwgaXQgZG9lc24ndCBrbm93IHdoaWNoIHRlcm0gdG8gZ2l2ZSB0aGUgdmFyaWFuY2UgdG8gKCJZb3UgZ2F2ZSBtZSAzIGxpbmVzIHRoYXQgYXJlIHRoZSBzYW1lISIgLSBhbmdyeSBtb2RlbCkNCi0gV2hlbiB3ZSBjZW50ZXIgb3VyIElWcywgdGhlIGNlbnRlciBvZiBlYWNoIElWIHJlcHJlc2VudHMgdGhlIG1lYW4gDQotIFdoZW4geW91IGludGVyYWN0IFggKiBaLCB5b3UgYXJlIGFkZGluZyBhIG5ldyBwcmVkaWN0b3IgKFhaKSB0aGF0IHN0cm9uZ2x5IGNvcnJlbGF0ZXMgd2l0aCBYIGFuZCBaIA0KLSBJZiB5b3UgY2VudGVyIHlvdXIgdmFyaWFibGVzLCB5b3Ugd2lsbCBub3cgaGF2ZSBhIFUtc2hhcGVkIGludGVyYWN0aW9uIHRoYXQgaXMgb3J0aG9nb25hbCB0byBYIGFuZCBaDQotICoqRXhjZXB0aW9uczoqKiBEb24ndCBjZW50ZXIgcGh5c2ljYWwgZGF0YSBvciB3aGVuIHRoZXJlIGlzIGEgdHJ1ZSwgbWVhbmluZ2Z1bCAwIA0KYGBge3IsIG1lc3NhZ2U9RkFMU0UsIGVjaG89VFJVRX0NCkdQQS5EYXRhJElRLkMgPC0gc2NhbGUoR1BBLkRhdGEkSVEsIGNlbnRlciA9IFRSVUUsIHNjYWxlID0gRkFMU0UpWyxdDQpHUEEuRGF0YSRXb3JrLkV0aGljLkMgPC0gc2NhbGUoR1BBLkRhdGEkV29yay5FdGhpYywgY2VudGVyID0gVFJVRSwgc2NhbGUgPSBGQUxTRSlbLF0NCmBgYA0KIyMgUnVuIHlvdXIgcmVncmVzc2lvbiBtb2RlbHMgDQpVc2UgKipsbSgpIGZ1bmN0aW9uKiogdG8gcnVuIG1vZGVsIHdpdGggYW5kIHdpdGhvdXQgaW50ZXJhY3Rpb24NCg0KLSBBZGRpdGl2ZSBlZmZlY3RzID0gKyANCi0gTXVsdGlwbGljYXRpdmUgKGludGVyYWN0aW9uKSBlZmZlY3RzID0gKiANCg0KVXNlICoqc3RhcmdhemVyKCkqKiB0byBnZXQgYSBwcmV0dHksIHVzZXItZnJpZW5kbHkgY2hhcnQgb2YgeW91ciByZXN1bHRzDQoNCmBgYHtyLCBtZXNzYWdlPUZBTFNFLCBlY2hvPVRSVUUscmVzdWx0cz0nYXNpcyd9DQpHUEEuTW9kZWwuMSA8LSBsbShHUEF+SVEuQytXb3JrLkV0aGljLkMsIEdQQS5EYXRhKQ0KR1BBLk1vZGVsLjIgPC0gbG0gKEdQQX5JUS5DKldvcmsuRXRoaWMuQywgR1BBLkRhdGEpDQoNCmxpYnJhcnkoc3RhcmdhemVyKQ0Kc3RhcmdhemVyKEdQQS5Nb2RlbC4xLCBHUEEuTW9kZWwuMix0eXBlPSJodG1sIiwJDQogICAgICAgICAgY29sdW1uLmxhYmVscyA9IGMoIk1haW4gRWZmZWN0cyIsICJJbnRlcmFjdGlvbiIpLAkNCiAgICAgICAgICBpbnRlcmNlcHQuYm90dG9tID0gRkFMU0UsCQ0KICAgICAgICAgIHNpbmdsZS5yb3c9RkFMU0UsIAkNCiAgICAgICAgICBub3Rlcy5hcHBlbmQgPSBGQUxTRSwJDQogICAgICAgICAgaGVhZGVyPUZBTFNFKQkNCmBgYA0KDQojIyBQbG90IHlvdXIgaW50ZXJhY3Rpb24gDQpXaGVuIHdlIGFyZSBwbG90dGluZyB0aGUgc2ltcGxlIHNsb3BlcyBvZiBhIGNvbnRpbnVvdXMgSVYgWCBjb250aW51b3VzIElWLCB3ZSBoYXZlIHRvIHNwZWNpZnkgd2hhdCBsZXZlbHMgb2YgZWFjaCB3ZSB3YW50IHRvIGV4YW1pbmUuIFRoZXJlIGFyZSAzIG1ldGhvZHMgZm9yIGNob29zaW5nIGxldmVsczogKipoYW5kIHBpY2tpbmcsIHF1YW50aWxlcywgc3RhbmRhcmQgZGV2aWF0aW9uKioNCg0KRm9yIHRoZSBuZXh0IDMgbWV0aG9kcywgd2UgYXJlIGdvaW5nIHRvIHNwZWNpZnkgdGhlIGNlbnRlcmVkIFdvcmsgRXRoaWMgSVYgdG8gcmFuZ2UgZnJvbSAtMi41IHRvIDIuNSwgaW5jcmVhc2luZyBieSAuNSwgYnV0IGZvciB0aGUgY2VudGVyZWQgSVEgSVYsIHdlIHdpbGwgc2hvdyAzIGRpZmZlcmVudCB0aGVvcmV0aWNhbCB3YXlzIHRvIGNob29zZSBvdXIgbGV2ZWxzLiANCg0KIyMjIFBsb3R0aW5nIHNpbXBsZSBzbG9wZXM6IEhhbmQgUGlja2luZw0KDQotIEhhbmQgcGlja2luZyBpcyB1c2VmdWwgaWYgeW91IGhhdmUgc3BlY2lmaWMgcHJlZGljdGlvbnMgaW4geW91ciBkYXRhIHNldCANCi0gSWYgeW91IGFyZSB3b3JraW5nIHdpdGggSVEsIGEgZHJ1Zywgb3IgYWdlIC0gbnVtYmVycyBhcmUgcmVsZXZhbnQgYW5kIGFyZSB1c2VmdWwgdG8gcGljayEgDQotIEZvciBvdXIgZXhhbXBsZSwgbGV0J3MgZ28gd2l0aCAtMTUsIDAsIDE1IGZvciBvdXIgY2VudGVyZWQgSVEgKDEgU0QgYWJvdmUgYW5kIGJlbG93IG1lYW4pIA0KLSAqKmMoKSoqIHdpbGwgZ2l2ZSB5b3UgdGhlIGV4YWN0IHZhbHVlcyBhbmQgKipzZXEoKSoqIHdpbGwgZ2l2ZSB5b3UgYSByYW5nZSBmcm9tIGEgdG8gYiwgaW5jcmVhc2luZyBieSBjIA0KDQoNCmBgYHtyLCBtZXNzYWdlPUZBTFNFLCBlY2hvPVRSVUV9DQpsaWJyYXJ5KGVmZmVjdHMpDQojUnVuIHRoZSBpbnRlcmFjdGlvbiANCkludGVyLkhhbmRQaWNrIDwtIGVmZmVjdCgnSVEuQypXb3JrLkV0aGljLkMnLCBHUEEuTW9kZWwuMiwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB4bGV2ZWxzPWxpc3QoSVEuQyA9IGMoLTE1LCAwLCAxNSksDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgV29yay5FdGhpYy5DID0gYygtMS4xLCAwLCAxLjEpKSwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBzZT1UUlVFLCBjb25maWRlbmNlLmxldmVsPS45NSwgdHlwaWNhbD1tZWFuKQ0KDQojUHV0IGRhdGEgaW4gZGF0YSBmcmFtZSANCkludGVyLkhhbmRQaWNrIDwtIGFzLmRhdGEuZnJhbWUoSW50ZXIuSGFuZFBpY2spDQoNCiNDaGVjayBvdXQgd2hhdCB0aGUgImhlYWQiIChmaXJzdCA2IHJvd3MpIG9mIHlvdXIgZGF0YSBsb29rcyBsaWtlDQpoZWFkKEludGVyLkhhbmRQaWNrKQ0KICANCiNDcmVhdGUgYSBmYWN0b3Igb2YgdGhlIElRIHZhcmlhYmxlIHVzZWQgaW4gdGhlIGludGVyYWN0aW9uICAgICAgICAgICAgICAgICAgIA0KSW50ZXIuSGFuZFBpY2skSVEgPC0gZmFjdG9yKEludGVyLkhhbmRQaWNrJElRLkMsDQogICAgICAgICAgICAgICAgICAgICAgbGV2ZWxzPWMoLTE1LCAwLCAxNSksDQogICAgICAgICAgICAgICAgICAgICAgbGFiZWxzPWMoIjEgU0QgQmVsb3cgUG9wdWxhdGlvbiBNZWFuIiwgIlBvcHVsYXRpb24gTWVhbiIsICIxIFNEIEFib3ZlIFBvcHVsYXRpb24gTWVhbiIpKQ0KICAgICAgICAgICAgICAgICAgICAgDQojQ3JlYXRlIGEgZmFjdG9yIG9mIHRoZSBXb3JrIEV0aGljIHZhcmlhYmxlIHVzZWQgaW4gdGhlIGludGVyYWN0aW9uIA0KSW50ZXIuSGFuZFBpY2skV29yay5FdGhpYyA8LSBmYWN0b3IoSW50ZXIuSGFuZFBpY2skV29yay5FdGhpYy5DLA0KICAgICAgICAgICAgICBsZXZlbHM9YygtMS4xLCAwLCAxLjEpLA0KICAgICAgICAgICAgICBsYWJlbHM9YygiUG9vciBXb3JrZXIiLCAiQXZlcmFnZSBXb3JrZXIiLCAiSGFyZCBXb3JrZXIiKSkNCg0KbGlicmFyeShnZ3Bsb3QyKSAgICAgICAgICAgICAgICANClBsb3QuSGFuZFBpY2s8LWdncGxvdChkYXRhPUludGVyLkhhbmRQaWNrLCBhZXMoeD1Xb3JrLkV0aGljLCB5PWZpdCwgZ3JvdXA9SVEpKSsNCiAgICAgIGdlb21fbGluZShzaXplPTIsIGFlcyhjb2xvcj1JUSkpKw0KICAgICAgeWxpbSgwLDQpKw0KICAgICAgeWxhYigiR1BBIikrDQogICAgICB4bGFiKCJXb3JrIEV0aGljIikrDQogICAgICBnZ3RpdGxlKCJIYW5kIFBpY2tlZCBQbG90IikNCg0KDQpQbG90LkhhbmRQaWNrIA0KI0luIFIsIHlvdSBoYXZlIHRvICJjYWxsIGZvciIgeW91ciBncmFwaHMgYWZ0ZXIgeW91IG1ha2UgdGhlbSBpbiBvcmRlciB0byBzZWUgdGhlbQ0KICAgICAgICAgICAgICAgIA0KI0NvZGUgdG8gc2F2ZSBwbG90IHRvIHlvdXIgY29tcHV0ZXIgDQojZ2dzYXZlKCJQbG90LjEucG5nIiwgUGxvdC4xLHdpZHRoID0gNSwgaGVpZ2h0ID0gNSwgdW5pdHMgPSAiaW4iKQ0KYGBgDQoNCiMjIyMgSW50ZXJwcmV0YXRpb24gb2YgSGFuZCBQaWNrZWQgUGxvdA0KVGhpcyBwbG90IGhlcmUgaXMgYW4gZXhhbXBsZSBvZiBwcmV0dHkgbXVjaCB0aGUgc2ltcGxlc3QgeW91IGNhbiBnZXQgd2l0aCBnZ3Bsb3QuIFRoZXNlIGFyZSB0aGUgZGVmYXVsdCBzZXR0aW5ncyB3aXRoIHJlc3BlY3QgdG8gYWxsIGFlc3RoZXRpYyBlbGVtZW50cy4gQXMgd2UgZ28gdGhyb3VnaCB0aGlzIGNoYXB0ZXIsIEkgd2lsbCBnaXZlIHlvdSBiaXRzIG9mIGNvZGUgdGhhdCB3aWxsIGhlbHAgeW91IG1ha2UgeW91ciBncmFwaCBwcmV0dGllciwgbW9yZSBjb2xvcmZ1bCwgb3IgYmV0dGVyIHN1aXRlZCBmb3IgcHVibGlzaGluZy4NCg0KRm9yIGV2ZW4gbW9yZSAqKmdncGxvdCoqIGZ1biwgcmVmZXIgdG8gW0NoYXB0ZXIgMTBdKGh0dHA6Ly9hZGVtb3MucGVvcGxlLnVpYy5lZHUvQ2hhcHRlcjEwLmh0bWwpIG9yIHRoaXMgYXdlc29tZSBbZ2dwbG90IENoZWF0IFNoZWV0XShodHRwczovL3d3dy5yc3R1ZGlvLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAxNS8wMy9nZ3Bsb3QyLWNoZWF0c2hlZXQucGRmKQ0KDQpJbiB0ZXJtcyBvZiB3aGF0IHRoaXMgZ3JhcGggaXMgdGVsbGluZyB1cywgd2UgY2FuIHZpc3VhbGl6ZSB0aGUgZmFjdCB0aGF0IGZvciBzbWFydCBwZW9wbGUgKDEgU0QgYWJvdmUgdGhlIHBvcHVsYXRpb24gbWVhbiAobm90IGRldGVybWluZWQgYnkgb3VyIGRhdGEgc2V0KSwgYXMgdGhlaXIgd29yayBldGhpYyBpbmNyZWFzZXMsIHNvIGRvZXMgdGhlaXIgR1BBLiBBIHNpbWlsYXIgcGF0dGVybiBpcyBzZWVuIGZvciBwZW9wbGUgd2l0aCBhdmVyYWdlIElRcywgdGhvdWdoIHRoZSBlZmZlY3QgaXMgbm90IG5lYXJseSBhcyBzdHJvbmcuIEZvciBwZW9wbGUgMSBTRCBiZWxvdyB0aGUgcG9wdWxhdGlvbiBtZWFuIG9uIElRLCBhcyB0aGVpciB3b3JrIGV0aGljIGluY3JlYXNlcywgaXQgYXBwZWFycyBhcyB0aG91Z2ggdGhlaXIgR1BBIGFjdHVhbGx5IGRlY3JlYXNlcy4gSW50ZXJlc3RpbmchIE1heWJlIHRoZXkgZ2V0IG1vcmUgY29uZnVzZWQgd2l0aCB0aGUgbWF0ZXJpYWw/IFdobyBrbm93cyEgDQoNCiMjIyBQbG90dGluZyBzaW1wbGUgc2xvcGVzOiBRdWFudGlsZSANCg0KLSBMZXQncyB1c2UgbGV2ZWxzIHRoYXQgYXJlIGJhc2VkIG9uIHF1YW50aWxlcyAoYmlucyBiYXNlZCBvbiBwcm9iYWJpbGl0eSkNCi0gWW91IGNhbiBhc2sgZm9yIGFzIG1hbnkgb3IgYXMgZmV3IHF1YW50aWxlcyBhcyB5b3Ugd2FudA0KLSBOb24tcGFyYW1ldHJpYzsgYmFzZWQgb24gcHJvYmFiaWxpdHkgYW5kIGRvZXMgbm90IGFzc3VtZSBub3JtYWxpdHkgb2YgSVYgDQotIEZvciB0aGlzIGV4YW1wbGUsIGxldCdzIGFzayBmb3IgNSBxdWFudGlsZXMgYW5kIGhhdmUgdGhlbSByb3VuZGVkIHRvIDIgZGVjaW1hbCBwb2ludHMgDQpgYGB7ciwgbWVzc2FnZT1GQUxTRSwgZWNobz1UUlVFfQ0KI01ha2UgeW91ciBuZXcgSVEgdmFyaWFibGUgdGhhdCBhc2tzIGZvciBxdWFudGlsZXMgIA0KSVEuUXVhbnRpbGUgPC0gcXVhbnRpbGUoR1BBLkRhdGEkSVEuQywgcHJvYnM9YygwLC4yNSwuNTAsLjc1LDEpKQ0KSVEuUXVhbnRpbGUgPC0gcm91bmQoSVEuUXVhbnRpbGUsIDIpDQpJUS5RdWFudGlsZSANCg0KbGlicmFyeShlZmZlY3RzKQ0KI1J1biB5b3VyIGludGVyYWN0aW9uDQpJbnRlci5RdWFudGlsZSA8LSBlZmZlY3QoJ0lRLkMqV29yay5FdGhpYy5DJywgR1BBLk1vZGVsLjIsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHhsZXZlbHM9bGlzdChJUS5DID0gYygtMzUuNDQsIC05Ljc4LCAtMC4wNCwgOS44OSwgNDEuOTApLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBXb3JrLkV0aGljLkMgPSBjKC0xLjEsIDAsIDEuMSkpLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBzZT1UUlVFLCBjb25maWRlbmNlLmxldmVsPS45NSwgdHlwaWNhbD1tZWFuKQ0KI1B1dCBkYXRhIGludG8gZGF0YSBmcmFtZQ0KSW50ZXIuUXVhbnRpbGUgPC0gYXMuZGF0YS5mcmFtZShJbnRlci5RdWFudGlsZSkNCg0KI0NyZWF0ZSBmYWN0b3JzIG9mIHRoZSBkaWZmZXJlbnQgdmFyaWFibGVzIGluIHlvdXIgaW50ZXJhY3Rpb246IA0KDQpJbnRlci5RdWFudGlsZSRJUTwtZmFjdG9yKEludGVyLlF1YW50aWxlJElRLkMsDQogICAgICAgICAgICAgICAgICAgICAgbGV2ZWxzPWMoLTM1LjQ0LCAtOS43OCwgLTAuMDQsIDkuODksIDQxLjkwKSwNCiAgICAgICAgICAgICAgICAgICAgICBsYWJlbHM9YygiMCUiLCAiMjUlIiwgIjUwJSIsICI3NSUiLCAiMTAwJSIpKQ0KICAgICAgICAgICAgICAgICAgICAgDQpJbnRlci5RdWFudGlsZSRXb3JrLkV0aGljPC1mYWN0b3IoSW50ZXIuUXVhbnRpbGUkV29yay5FdGhpYy5DLA0KICAgICAgICAgICAgICBsZXZlbHM9YygtMS4xLCAwLCAxLjEpLA0KICAgICAgICAgICAgICBsYWJlbHM9YygiUG9vciBXb3JrZXIiLCAiQXZlcmFnZSBXb3JrZXIiLCAiSGFyZCBXb3JrZXIiKSkNCmBgYA0KKipGVU4gV0lUSCBGT05UUyoqDQoNCmluc3RhbGwucGFja2FnZXMoZXh0cmFmb250KSANCg0KSSBkaWQgbm90IGluY2x1ZGUgdGhpcyBwYWNrYWdlIHVwIGZyb250LCBhcyBpdCBpcyB0b3RhbGx5IG9wdGlvbmFsISANCklmIHlvdSB3YW50IHRvIHBsYXkgYXJvdW5kIHdpdGggZGlmZmVyZW50IGZvbnQgb3B0aW9ucywgaW5zdGFsbCB0aGlzIHBhY2thZ2UgYW5kIGxvYWQgaXQNCg0KQWZ0ZXIgaW5zdGFsbGF0aW9uL2xvYWRpbmcsIHlvdSB3aWxsIHdhbnQgdG8gcnVuIHRoZSBmb2xsb3dpbmcgY29kZToNCioqZm9udF9pbXBvcnQoKSoqDQoNClRoaXMgY29kZSBjYW4gdGFrZSBhIGZldyBtaW51dGVzIHRvIHJ1biwgd2hpY2ggaXMgd2h5IEkgaGF2ZSBub3QgaW5jbHVkZWQgaXQgaW4gdGhlIGNvZGVkIHNlY3Rpb24gb2YgdGhpcyBjaGFwdGVyLiANCg0KVGhlIGxhc3QgZnVuY3Rpb24geW91IHdpbGwgbmVlZCBpczogKipmb250cygpKiogDQpZb3Ugd2lsbCBnZXQgYSBsaXN0IG9mIGFsbCB0aGUgZm9udHMgYWNjZXNzaWJsZSB0byB5b3UgaW4gUg0KDQpgYGB7ciwgbWVzc2FnZT1GQUxTRSwgZWNobz1UUlVFLCB3YXJuaW5nPUZBTFNFfQ0KbGlicmFyeShleHRyYWZvbnQpDQojZm9udF9pbXBvcnQoKSAjIHJ1biB0aGlzIGxpbmUgb2YgY29kZWQgaGVyZSB0byBpbnN0YWxsIGZvbnRzDQpsaWJyYXJ5KGdncGxvdDIpIA0KUGxvdC5RdWFudGlsZTwtZ2dwbG90KGRhdGE9SW50ZXIuUXVhbnRpbGUsIGFlcyh4PVdvcmsuRXRoaWMsIHk9Zml0LCBncm91cD1JUSkpKw0KICAgICAgZ2VvbV9saW5lKHNpemU9MiwgYWVzKGNvbG9yPUlRKSkrDQogICAgICB5bGFiKCJHUEEiKSsNCiAgICAgIHhsYWIoIldvcmsgRXRoaWMiKSsNCiAgICAgIHNjYWxlX2NvbG9yX21hbnVhbCh2YWx1ZXM9YygiIzQyYzVmNCIsIiM1NGYyODQiLCIjZjQ1ZGNjIiwgIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiI2ZmOWQzNSIsIiNkN2FmZmYiKSkrICNjdXN0b20gY29sb3IgY29kaW5nIA0KICAgICAgdGhlbWVfYncoKSsgI2RlbGV0aW5nIHRoZSBncmF5IGJhY2tncm91bmQgDQogICAgICB0aGVtZSh0ZXh0ID0gZWxlbWVudF90ZXh0KGZhbWlseT0iSW1wYWN0Iiwgc2l6ZT0xNCwgY29sb3I9ImJsYWNrIikpKyAjY2hhbmdpbmcgZm9udCENCiAgICAgIGdndGl0bGUoIlF1YW50aWxlIFBsb3QiKSAjYWRkaW5nIGEgdGl0bGUhIA0KDQpQbG90LlF1YW50aWxlDQoNCmBgYA0KDQojIyMjIEludGVycHJldGF0aW9uIG9mIFF1YW50aWxlIFBsb3QNClNvIHRvIHJlY2FwIHRoZSBjb2RlcyB3ZSBsZWFybmVkIGluIHRoaXMgcGxvdCwgd2Ugbm93IGtub3cgaG93IHRvIGNoYW5nZSBmb250cywgZ2V0IHJpZCBvZiB0aGUgZ3JheSBiYWNrZ3JvdW5kLCBhZGQgYSB0aXRsZSwgYW5kIGNob29zZSBjdXN0b20gY29sb3JzISANCg0KWW91IG1heSBiZSB3b25kZXJpbmcgd2hlcmUgSSBnb3QgdGhlc2UgZnVua3kgbGV0dGVyL251bWJlciBjb21iaW5hdGlvbnMgdGhhdCB0cmFuc2xhdGUgaW50byBjb2xvcnMuIElmIHlvdSBnb29nbGUgImh0bWwgY29sb3IgcGlja2VyIiwgeW91IGNhbiBjb3B5IHRoZSBjb2xvciBjb2RlIG9mIGFueSBjb2xvciB5b3VyIGhlYXJ0IGRlc2lyZXMhIFByZXR0eSBuZWF0ISEgDQoNCk5vdywgaW4gdGVybXMgb2Ygd2hhdCB3ZSdyZSBsZWFybmluZyBmcm9tIHRoaXMgZ3JhcGggLSB3ZSBjYW4gc2VlIHRoZSBpbnRlcmFjdGlvbiBlZmZlY3RzIGEgbG90IG1vcmUgY2xlYXJseS4gSXQgc2VlbXMgYXMgdGhvdWdoIGFsbCBwZW9wbGUgaW4gdGhlIDI1dGggcGVyY2VudGlsZSBvciBoaWdoZXIgYXJlIGV4cGVyaWVuY2luZyBzb21lIGRlZ3JlZWUgb2YgYSBwb3NpdGl2ZSByZWxhdGlvbnNoaXAgYmV0d2VlbiB3b3JrIGV0aGljIGFuZCBHUEEuIEFzIHdvcmsgZXRoaWMgYW5kIElRIGluY3JlYXNlLCBzbyBkb2VzIEdQQSEgVW5mb3J0dW5hdGVseSwgZm9yIHRoaXMgZ3JvdXAgYmVsb3cgdGhlIDI1dGggcGVyY2VudGlsZSwgdGhlcmUgaXMgYSBwcmV0dHkgY2xlYXIgbmVnYXRpdmUgcmVsYXRpb25zaGlwIGluZGljYXRpbmcgdGhhdCBpcyB0aGVpciB3b3JrIGV0aGljIGluY3JlYXNlcywgdGhlaXIgR1BBIGFjdHVhbGx5IGRlY3JlYXNlcy4gTm90IGdvb2QhIA0KDQojIyMgUGxvdHRpbmcgc2ltcGxlIHNsb3BlczogU3RhbmRhcmQgRGV2aWF0aW9uIA0KDQotIExhc3RseSwgbGV0J3MgY2hvb3NlIG91ciBsZXZlbHMgYmFzZWQgb24gdGhlIHN0YW5kYXJkIGRldmlhdGlvbiBvZiB0aGUgZGF0YSANCi0gV2UgY2FuIHNlbGVjdCB2YWx1ZXMgYmFzZWQgb24gdGhlIG1lYW4gYW5kIFNEIG9mIG91ciBkYXRhIA0KLSBGb3IgdGhpcyBleGFtcGxlLCB3ZSB3aWxsIGRvIDMgdmFsdWVzOiBNIC0gMVNELCBNLCBNICsgMVNELCB3aGVyZSBNID0gbWVhbiANCi0gT25jZSBhZ2Fpbiwgd2UgYXJlIGdvaW5nIHRvIHJvdW5kIG9mZiB0aGVzZSB2YWx1ZXMgYXQgMiBkZWNpbWFsIHBvaW50cyB3aXRoICoqcm91bmQoKQ0KLSBOb3RlOiBiZWNhdXNlIHdlIGhhdmUgY2VudGVyZWQgb3VyIGRhdGEsIE0gPSAwICYgcmVtZW1iZXIsIGNlbnRlcmluZyBkb2Vzbid0IGNoYW5nZSBvdXIgU0QNCi0gQW5vdGhlciBub3RlOiBzaW5jZSB3ZSAiaGFuZCBwaWNrZWQiIHdoYXQgd2Uga25vdyB0byBiZSB0aGUgdHJhZGl0aW9uYWwgbWVhbiBhbmQgU0QgZm9yIElRLCB0aGVzZSBsZXZlbHMgc2hvdWxkIGxvb2sgdmVyeSBzaW1pbGFyIHRvIG91ciBmaXJzdCBzaW1wbGUgc2xvcGVzIGdyYXBoISANCg0KYGBge3IsIG1lc3NhZ2U9RkFMU0UsIGVjaG89VFJVRX0NCiNDcmVhdGUgb3VyIG5ldyB2YXJpYWJsZSBmb3IgSVEgYmFzZWQgb24gdGhlIGFjdHVhbCBtZWFuL3N0YW5kYXJkIGRldmlhdGlvbiBpbiBvdXIgZGF0YSBzZXQNCg0KSVEuU0QgPC0gYyhtZWFuKEdQQS5EYXRhJElRLkMpLXNkKEdQQS5EYXRhJElRLkMpLA0KICAgICAgICAgICBtZWFuKEdQQS5EYXRhJElRLkMpLA0KICAgICAgICAgICBtZWFuKEdQQS5EYXRhJElRLkMpK3NkKEdQQS5EYXRhJElRLkMpKQ0KDQpJUS5TRCA8LSByb3VuZChJUS5TRCwgMikNCklRLlNEDQojIE5vdGU6IHRoZSBtZWFuIGlzIDAgYmVjYXVzZSB3ZSBtZWFuIGNlbnRlcmVkIG91ciBkYXRhLCBtZWFuaW5nIHdlIHNhaWQsIG1ha2UgDQojIHRoZSBtZWFuIG9mIG91ciBkYXRhID0gMCEgQWxzbywgd2Ugc2VlIHRoYXQgb3VyIHN0YW5kYXJkIGRldmlhdGlvbnMgYXJlIHByZXR0eSANCiMgZGFybiBjbG9zZSB0byB0aGUgZXhwZWN0ZWQgcG9wdWxhdGlvbiBzdGFuZGFyZCBkZXZpYXRpb25zLiBLZWVwIGluIG1pbmQgdGhhdCANCiMgdGhpcyBpcyBzaW11bGF0ZWQgZGF0YSwgYW5kIG1vc3QgZGF0YSBpbiB0aGUgcmVhbCB3b3JsZCB3aWxsIG5vdCBwcm9kdWNlIHN1Y2ggDQojICJ0eXBpY2FsIiBkYXRhIA0KSW50ZXIuU0QgPC0gZWZmZWN0KGMoIklRLkMqV29yay5FdGhpYy5DIiksIEdQQS5Nb2RlbC4yLA0KICAgICAgICAgICAgICAgICAgICAgeGxldmVscz1saXN0KElRLkM9YygtMTQuNzUsIDAsIDE0Ljc1KSwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBXb3JrLkV0aGljLkM9YygtMS4xLCAwLCAxLjEpKSkgDQojIHB1dCBkYXRhIGluIGRhdGEgZnJhbWUgDQpJbnRlci5TRCA8LSBhcy5kYXRhLmZyYW1lKEludGVyLlNEKQ0KDQojIENyZWF0ZSBmYWN0b3JzIG9mIHRoZSBkaWZmZXJlbnQgdmFyaWFibGVzIGluIHlvdXIgaW50ZXJhY3Rpb24gDQpJbnRlci5TRCRJUTwtZmFjdG9yKEludGVyLlNEJElRLkMsDQogICAgICAgICAgICAgICAgICAgICAgbGV2ZWxzPWMoLTE0Ljc1LCAwLCAxNC43NSksDQogICAgICAgICAgICAgICAgICAgICAgbGFiZWxzPWMoIjEgU0QgQmVsb3cgTWVhbiIsICJNZWFuIiwgIjEgU0QgQWJvdmUgTWVhbiIpKQ0KICAgICAgICAgICAgICAgICAgICAgDQpJbnRlci5TRCRXb3JrLkV0aGljPC1mYWN0b3IoSW50ZXIuU0QkV29yay5FdGhpYy5DLA0KICAgICAgICAgICAgICBsZXZlbHM9YygtMS4xLCAwLCAxLjEpLA0KICAgICAgICAgICAgICBsYWJlbHM9YygiUG9vciBXb3JrZXIiLCAiQXZlcmFnZSBXb3JrZXIiLCAiSGFyZCBXb3JrZXIiKSkNCg0KIyBQbG90IHRoaXMgYmFkIGJveSENClBsb3QuU0Q8LWdncGxvdChkYXRhPUludGVyLlNELCBhZXMoeD1Xb3JrLkV0aGljLCB5PWZpdCwgZ3JvdXA9SVEpKSsNCiAgICAgIGdlb21fbGluZShzaXplPTEsIGFlcyhjb2xvcj1JUSkpKyAjQ2FuIGFkanVzdCB0aGUgdGhpY2tuZXNzIG9mIHlvdXIgbGluZXMNCiAgICAgIGdlb21fcG9pbnQoYWVzKGNvbG91ciA9IElRKSwgc2l6ZT0yKSsgI0NhbiBhZGp1c3QgdGhlIHNpemUgb2YgeW91ciBwb2ludHMNCiAgICAgIGdlb21fcmliYm9uKGFlcyh5bWluPWZpdC1zZSwgeW1heD1maXQrc2UpLGZpbGw9ImdyYXkiLGFscGhhPS42KSsgI0NhbiBhZGp1c3QgeW91ciBlcnJvciBiYXJzDQogICAgICB5bGltKDAsNCkrICNQdXRzIGEgbGltaXQgb24gdGhlIHktYXhpcw0KICAgICAgeWxhYigiR1BBIikrICNBZGRzIGEgbGFiZWwgdG8gdGhlIHktYXhpcw0KICAgICAgeGxhYigiV29yayBFdGhpYyIpKyAjQWRkcyBhIGxhYmVsIHRvIHRoZSB4LWF4aXMNCiAgICAgIGdndGl0bGUoIlN0YW5kYXJkIERldmlhdGlvbiBQbG90IikrICNUaXRsZQ0KICAgICAgdGhlbWVfYncoKSsgI1JlbW92ZXMgdGhlIGdyYXkgYmFja2dyb3VuZCANCiAgICAgIHRoZW1lKHBhbmVsLmdyaWQubWFqb3I9ZWxlbWVudF9ibGFuaygpLA0KICAgICAgICAgIHBhbmVsLmdyaWQubWlub3I9ZWxlbWVudF9ibGFuaygpLA0KICAgICAgICAgIGxlZ2VuZC5rZXkgPSBlbGVtZW50X2JsYW5rKCkpKyAjUmVtb3ZlcyB0aGUgbGluZXMgDQogICAgIHNjYWxlX2ZpbGxfZ3JleSgpDQpQbG90LlNEDQpgYGANCg0KIyMjIyBJbnRlcnByZXRhdGlvbiBvZiBTRCBwbG90DQoqKiBOb3RlIC0gdGhlIGVycm9yIGJhcnMgaW4gdGhpcyBncmFwaCBhcmUgdmVyeSBoYXJkIHRvIHNlZSwgYmVjYXVzZSB3ZSBoYXZlIHZlcnkgDQpsaXR0bGUgZXJyb3IgaW4gb3VyIHNpbXVsYXRlZCBkYXRhIHNldC4gRm9yIGEgZnVsbCBBUEEgc3R5bGUgZ3JhcGgsIGVycm9yIGJhcnMgDQp3b3VsZCBiZSBleHBlY3RlZC4gDQoNCiMgQ29udGludW91cyB4IENhdGVnb3JpY2FsIFJlZ3Jlc3Npb24gDQoqKklRIHggR2VuZGVyIChNYWxlL0ZlbWFsZSkgYXMgcHJlZGljdG9ycyBvZiBHUEEqKiANCg0KTm93IHRoYXQgd2UgaGF2ZSBnb25lIHRocm91Z2ggb25lIGZ1bGwgZXhhbXBsZSBvZiByZWdyZXNzaW9uIGludGVyYWN0aW9ucywgdGhlIG5leHQgdHdvIHNlY3Rpb25zIHNob3VsZCBiZSBhIGJpdCBlYXNpZXIuIFRoaXMgdXBjb21pbmcgc2VjdGlvbiBpcyBnb2luZyB0byBsb29rIGF0IGhvdw0KeW91IHdvdWxkIHJ1bi9wbG90IGEgcmVncmVzc2lvbiB3aXRoIDEgY29udGludW91cyBwcmVkaWN0b3IgdmFyaWFibGUgYW5kIDEgY2F0ZWdvcmljYWwgcHJlZGljdG9yIHZhcmlhYmxlLiANCg0KR29pbmcgb2ZmIG9mIG91ciBsYXN0IGV4YW1wbGUsIGxldCdzIHNheSB3ZSBub3cgd2FudCB0byBpbnZlc3RpZ2F0ZSBob3cgd29yayBldGhpYyBpbnRlcmFjdHMgd2l0aCBnZW5kZXIgKGFzIGEgY2F0ZWdvcmljYWwgdmFyaWFibGUpLiBUaGluZ3MgZ2V0IHNsaWdodGx5IHRyaWNraWVyLi4uIExldCdzIGNoZWNrIGl0IG91dCENCmBgYHtyLCBtZXNzYWdlPUZBTFNFLCBlY2hvPVRSVUV9DQojT25jZSBhZ2Fpbiwgd2UgYXJlIGdvaW5nIHRvIGJlZ2luIGJ5IHNpbXVsYXRpbmcgb3VyIGRhdGEgDQojUmVtZW1iZXIsIHlvdXIgc2VlZCBjYW4gYmUgc2V0IHRvIGFueXRoaW5nIQ0Kc2V0LnNlZWQoMTQwKQkNCiNTdGF5aW5nIHdpdGggMjUwIHBhcnRpY2lwYW50cyBmb3IgY29uc2lzdGVuY3kncyBzYWtlIA0KTiA8LSAyNTANCiNVbmlmb3JtIGRpc3RyaWJ1dGlvbiBvZiB3b3JrIGV0aGljIChYKSBmcm9tIDEtNSAoMSA9IHBvb3Igd29yayBldGhpYywgNSA9IGdyZWF0IHdvcmsgZXRoaWMpIA0KWCA8LSBybm9ybShuLCAyLjc1LCAuNzUpDQojT3VyIG5ld2VzdCB2YXJpYWJsZSwgRywgaXMgYSBiaW5hcnkgdmFyaWFibGUgKDAsMSkgZm9yIGdlbmRlciANCiNXZSBhcmUgYXNraW5nIHRoZSBjb21wdXRlciB0byBjcmVhdGUgYSBkYXRhc2V0IG9mIDBzIGFuZCAxcyBhbmQgY2FsbCBpdCB2YXJpYWJsZSBHDQpHIDwtIHNhbXBsZShyZXAoYygwLDEpLE4pLE4scmVwbGFjZSA9IEZBTFNFKQkNCiNUaGlzIGlzIG91ciBlcXVhdGlvbiB0byBjcmVhdGUgWQ0KWSA8LSAuNypYICsgLjMqRyArIDIqWCpHICsgcm5vcm0obiwgc2QgPSA1KQkJDQojR290dGEgY2FwIG91ciBZIHZhcmlhYmxlIGF0IDQgKGJlY2F1c2UgaXQgaXMgR1BBKQ0KWSA9IChZIC0gbWluKFkpKSAvIChtYXgoWSkgLSBtaW4oWSkpKjQNCiNGaW5hbGx5LCBsZXQncyBwdXQgYWxsIG91ciB2YXJpYWJsZXMgaW50byBhIGRhdGEgZnJhbWUgDQojVGhpcyBpcyBiYXNpY2FsbHkgdGVsbGluZyB0aGUgY29tcHV0ZXIgInB1dCBhbGwgdGhlc2UgdmFyaWFibGVzIEkganVzdCBtYWRlIGludG8gb25lIGRhdGEgc2V0Ig0KR1BBLkRhdGEuMjwtZGF0YS5mcmFtZShHUEE9WSwgV29yay5FdGhpYz1YLCBHZW5kZXI9RykJDQojRG9uJ3QgZm9yZ2V0IHRvIGNlbnRlciBvdXIgY29udGludW91cyB2YXJpYWJsZSEgDQpHUEEuRGF0YS4yJFdvcmsuRXRoaWMuQyA8LSBzY2FsZShHUEEuRGF0YSRXb3JrLkV0aGljLCBjZW50ZXIgPSBUUlVFLCBzY2FsZSA9IEZBTFNFKVssXQ0KYGBgDQojIyBEdW1teSBDb2RpbmcgDQoNCkhlcmUgaXMgd2hlcmUgdGhpbmdzIGdldCBhIGxpdHRsZSBkaWZmZXJlbnQuLiANCg0KKipXaGF0IGlzIER1bW15IENvZGluZz8qKiANCg0KLSBJdCBpcyB0aGUgbW9zdCBjb21tb24gYW5kIGJhc2ljIHdheSB0byBhbmFseXplIGNhdGVnb3JpY2FsIHZhcmlhYmxlcyBpbiByZWdyZXNzaW9uIA0KLSBFdmVyeSB2YXJpYWJsZSBoYXMgYSBiYXNlbGluZS9yZWZlcmVuY2UgZ3JvdXAgdGhhdCBvdGhlciAibGV2ZWxzIiBnZXQgY29tcGFyZWQgdG8NCi0gUiBkdW1teSBjb2RlcyBhdXRvbWF0aWNhbGx5IHdoZW4gaXQgZGV0ZWN0cyBmYWN0b3IgdmFyaWFibGVzIA0KLSBUaGUgcXVlc3Rpb24gd2UgYXJlIGFza2luZyBpczogImhvdyBtdWNoIGRvZXMgZWFjaCBncm91cCBkZXZpYXRlIGZyb20gdGhlIHJlZmVyZW5jZT8iDQoNCkluIHRoaXMgcGFydGljdWxhciBjYXNlLCBzaW5jZSB0aGVyZSBhcmUgb25seSB0d28gbGV2ZWxzIG9mIHRoZSB2YXJpYWJsZSBHZW5kZXIgKG1hbGUgYW5kIGZlbWFsZSksIGl0IGlzIHF1aXRlIGEgc2ltcGxlIGR1bW15IGNvZGUgb2YgMCwgMS4gQWxsIG1hbGVzIGluIHRoZSBkYXRhIHNldCBhcmUgYXNzaWduZWQgYSAwIGFuZCBhbGwgZmVtYWxlcyBhcmUgYXNzaWduZWQgYSAxLiANCg0KUHJldmlvdXNseSwgSSB3cm90ZSB0aGF0IFIgZHVtbXkgY29kZXMgYXV0b21hdGljYWxseS4gV2hpbGUgd2UgZ2V0IHRoZSAwcyBhbmQgMXMgYXV0b21hdGljYWxseSwgaXQgaXMgZmFyIG1vcmUgaW50dWl0aXZlIHRvIHJlbmFtZSBvdXIgZmFjdG9yIHRvIHNvbWV0aGluZyB0aGF0IG1ha2VzIG1vcmUgc2Vuc2UuIA0KDQotIFdlIGFyZSBjcmVhdGluZyBhIG5ldyB2YXJpYWJsZSwgY2FsbGVkIEdlbmRlci5GLCB3aGVyZSBGIHN0YW5kcyBmb3IgZmFjdG9yIA0KLSBUaGlzIHZhcmlhYmxlIG5vdyBoYXMgbGV2ZWxzIHdpdGggd29yZHMsIGluc3RlYWQgb2YganVzdCAwcyBhbmQgMXMgDQotICoqTm90ZToqKiBpdCBpcyB2ZXJ5IGltcG9ydGFudCB0aGF0IHlvdXIgbGFiZWxzIGFyZSBzcGVsbGVkIHJpZ2h0IChvciB0aGF0IHlvdSBjb25zaXN0ZW50bHkgc3BlbGwgeW91ciBsYWJlbHMgaW5jb3JyZWN0bHkpIGJlY2F1c2UgeW91IHdpbGwgYmUgZW50ZXJpbmcgaW4gdGhlc2UgZXhhY3QgbGFiZWxzIGFnYWluIHdoZW4geW91IGNyZWF0ZSB5b3VyIGludGVyYWN0aW9ucyANCg0KYGBge3IsIG1lc3NhZ2U9RkFMU0UsIGVjaG89VFJVRX0NCkdQQS5EYXRhLjIkR2VuZGVyLkYgPC0gZmFjdG9yKEdQQS5EYXRhLjIkR2VuZGVyLAkNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbGV2ZWw9YygwLDEpLAkNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbGFiZWxzPWMoIk1hbGUiLCJGZW1hbGUiKSkJDQpgYGANCg0KDQojIyBSdW4geW91ciByZWdyZXNzaW9uIG1vZGVscyANCg0KVXNlICoqbG0oKSBmdW5jdGlvbioqIHRvIHJ1biBtb2RlbCB3aXRoIGFuZCB3aXRob3V0IGludGVyYWN0aW9uDQoNCi0gQWRkaXRpdmUgZWZmZWN0cyA9ICsgDQotIE11bHRpcGxpY2F0aXZlIChpbnRlcmFjdGlvbikgZWZmZWN0cyA9ICogDQoNCioqVXNlIHN0YXJnYXplcigpIHRvIHZpc3VhbGl6ZSB5b3VyIHJlc3VsdHMqKg0KDQpgYGB7ciwgbWVzc2FnZT1GQUxTRSwgZWNobz1UUlVFLHJlc3VsdHM9J2FzaXMnfQ0KR1BBLjIuTW9kZWwuMSA8LSBsbShHUEF+V29yay5FdGhpYy5DK0dlbmRlci5GLCBHUEEuRGF0YS4yKQ0KR1BBLjIuTW9kZWwuMiA8LSBsbShHUEF+V29yay5FdGhpYy5DKkdlbmRlci5GLCBHUEEuRGF0YS4yKQ0KDQpsaWJyYXJ5KHN0YXJnYXplcikNCnN0YXJnYXplcihHUEEuMi5Nb2RlbC4xLCBHUEEuMi5Nb2RlbC4yLHR5cGU9Imh0bWwiLAkNCiAgICAgICAgICBjb2x1bW4ubGFiZWxzID0gYygiTWFpbiBFZmZlY3RzIiwgIkludGVyYWN0aW9uIiksCQ0KICAgICAgICAgIGludGVyY2VwdC5ib3R0b20gPSBGQUxTRSwJDQogICAgICAgICAgc2luZ2xlLnJvdz1GQUxTRSwgCQ0KICAgICAgICAgIG5vdGVzLmFwcGVuZCA9IEZBTFNFLAkNCiAgICAgICAgICBoZWFkZXI9RkFMU0UpCQ0KYGBgDQoNCkxldCdzIGdvIHJpZ2h0IGludG8gY3JlYXRpbmcgb3VyIGludGVyYWN0aW9uIQ0KDQpLZWVwIGluIG1pbmQsIHdlIGFscmVhZHkgdHVybmVkIEdlbmRlciBpbnRvIGEgRmFjdG9yIHdpdGggbGFiZWxlZCBsZXZlbHMsIHNvIHdlIGNhbiByZWZlciB0byB0aGUgYWN0dWFsIG5hbWVzIG9mIHRoZSBsZXZlbHMgKGluc3RlYWQgb2YgbnVtYmVycykNCmBgYHtyLCBtZXNzYWdlPUZBTFNFLCBlY2hvPVRSVUV9DQpsaWJyYXJ5KGVmZmVjdHMpDQojT3VyIGludGVyYWN0aW9uDQpJbnRlci5HUEEuMiA8LSBlZmZlY3QoJ1dvcmsuRXRoaWMuQypHZW5kZXIuRicsIEdQQS4yLk1vZGVsLjIsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB4bGV2ZWxzPWxpc3QoV29yay5FdGhpYy5DID0gYygtMS4xLCAwLCAxLjEpKSwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHNlPVRSVUUsIGNvbmZpZGVuY2UubGV2ZWw9Ljk1LCB0eXBpY2FsPW1lYW4pDQoNCiNQdXQgZGF0YSBpbiBkYXRhIGZyYW1lIA0KSW50ZXIuR1BBLjI8LWFzLmRhdGEuZnJhbWUoSW50ZXIuR1BBLjIpDQoNCiNDcmVhdGUgZmFjdG9ycyBvZiB0aGUgaW50ZXJhY3Rpb24gdmFyaWFibGVzICAgICAgICAgICAgICAgICAgICAgIA0KSW50ZXIuR1BBLjIkV29yay5FdGhpYzwtZmFjdG9yKEludGVyLkdQQS4yJFdvcmsuRXRoaWMuQywNCiAgICAgICAgICAgICAgbGV2ZWxzPWMoLTEuMSwgMCwgMS4xKSwNCiAgICAgICAgICAgICAgbGFiZWxzPWMoIlBvb3IgV29ya2VyIiwgIkF2ZXJhZ2UgV29ya2VyIiwgIkhhcmQgV29ya2VyIikpDQpJbnRlci5HUEEuMiRHZW5kZXI8LWZhY3RvcihJbnRlci5HUEEuMiRHZW5kZXIuRiwNCiAgICAgICAgICAgICAgbGV2ZWxzPWMoIk1hbGUiLCAiRmVtYWxlIikpDQojTm90ZTogd2hlbiBJIGNyZWF0ZSB0aGlzIEdlbmRlciBmYWN0b3IsIEkgd2lsbCBubyBsb25nZXIgdXNlICIuRiIgc28gSSBkb24ndCBoYXZlIHRvIHJlbmFtZSBteSBsZWdlbmQgaW4gbXkgcGxvdCANCg0KbGlicmFyeShnZ3Bsb3QyKQ0KI1Bsb3QgaXQgdXAhDQpQbG90LkdQQS4yPC1nZ3Bsb3QoZGF0YT1JbnRlci5HUEEuMiwgYWVzKHg9V29yay5FdGhpYywgeT1maXQsIGdyb3VwPUdlbmRlcikpKw0KICAgICAgY29vcmRfY2FydGVzaWFuKHlsaW0gPSBjKDAsNCkpKyAgDQojRm9yIHlsaW0sIHNwZWNpZnkgdGhlIHJhbmdlIG9mIHlvdXIgRFYgKGluIG91ciBjYXNlLCAwLTQpDQogICAgICBnZW9tX2xpbmUoc2l6ZT0yLCBhZXMoY29sb3I9R2VuZGVyKSkrDQogICAgICB5bGFiKCJHUEEiKSsNCiAgICAgIHhsYWIoIldvcmsgRXRoaWMiKSsNCiAgICAgIGdndGl0bGUoIldvcmsgRXRoaWMgYW5kIEdlbmRlciBhcyBQcmVkaWN0b3JzIG9mIEdQQSIpKw0KICAgICAgdGhlbWVfYncoKSsgDQogICAgICAgIHRoZW1lKHBhbmVsLmdyaWQubWFqb3I9ZWxlbWVudF9ibGFuaygpLA0KICAgICAgICBwYW5lbC5ncmlkLm1pbm9yPWVsZW1lbnRfYmxhbmsoKSkrDQogICAgICBzY2FsZV9maWxsX2dyZXkoKQ0KUGxvdC5HUEEuMg0KYGBgDQojIyMjIEludGVycHJldGF0aW9uIG9mIENvbnRpbnVvdXMgeCBDYXRlZ29yaWFsIEludGVyYWN0aW9uIFBsb3QNCkFzIHlvdSBjYW4gc2VlLCB0aGVyZSBpcyBub3QgbXVjaCBvZiBhbiBpbnRlcmFjdGlvbiwgd2hpY2ggd2Ugd291bGQgZXhwZWN0IGFmdGVyIHNlZWluZyB0aGF0IG91ciBpbnRlcmFjdGlvbiBlZmZlY3Qgd2FzIGluc2lnbmlmaWNhbnQuIA0KDQojQ2F0ZWdvcmljYWwgeCBDYXRlZ29yaWNhbCBSZWdyZXNzaW9uIA0KDQoqKlR1dG9ycyBhbmQgR2VuZGVyIGFzIFByZWRpY3RvcnMgb2YgR1BBKioNCg0KRm9yIHRoZSBmaW5hbCBleGFtcGxlIG9mIHRoZSBjaGFwdGVyLCB3ZSBhcmUgZ29pbmcgdG8gbG9vayBhdCBwbG90dGluZyBpbnRlcmFjdGlvbnMgd2l0aCAyIGNhdGVnb3JpY2FsIHByZWRpY3RvcnMuIFdlIGtub3cgdGhhdCBzdHVkZW50cyBkaWZmZXIgaW4gdGhlaXIgYWNjZXNzIHRvL3VzZSBvZiB0dXRvcmluZyBhbmQgaXQgd291bGQgYmUgaW50ZXJlc3RpbmcgdG8gc2VlIGhvdyBHZW5kZXIgaW50ZXJhY3RzIHdpdGggdHV0b3Jpbmcgc2VydmljZXMuIA0KDQpTdHVkZW50cyBpbiB0aGlzIHN0dWR5IGVpdGhlciBoYXZlOiANCg0KLSBObyBUdXRvciANCi0gR3JvdXAgVHV0b3IgDQotIFByaXZhdGUgVHV0b3IgDQoNCiMjIERhdGEgc2ltdWxhdGlvbiANCmBgYHtyLCBtZXNzYWdlPUZBTFNFLCBlY2hvPVRSVUV9DQojU2V0IHVwIHNpbXVsYXRpb24JDQpzZXQuc2VlZCgyNDQpCQ0KTiA8LSAyNTAJDQpRIDwtIHNhbXBsZShyZXAoYygtMSwwLDEpLE4pLE4scmVwbGFjZSA9IEZBTFNFKQkjUSA9IFR1dG9yIFN0YXR1cw0KRyA8LSBzYW1wbGUocmVwKGMoMCwxKSxOKjMvMiksTixyZXBsYWNlID0gRkFMU0UpICNHID0gR2VuZGVyDQoNCiNPdXIgZXF1YXRpb24gdG8gY3JlYXRlIFkJDQpZIDwtIC41KlEgKyAuMjUqRyArIDIuNSpRKkcrIDEgKyBybm9ybShOLCBzZD0yKQkNCg0KI1B1dCBhIGNhcCBvbiBvdXIgWQ0KWSA9IChZIC0gbWluKFkpKSAvIChtYXgoWSkgLSBtaW4oWSkpKjQNCg0KI0J1aWxkIG91ciBkYXRhIGZyYW1lCQ0KR1BBLkRhdGEuMzwtZGF0YS5mcmFtZShHUEE9WSxUdXRvcj1RLEdlbmRlcj1HKQkNCg0KYGBgDQoNCiMjIER1bW15IGNvZGluZyANClNpbWlsYXIgdG8gdGhlIGxhc3QgZXhhbXBsZSwgd2UgYXJlIGdvaW5nIHRvIG5vdyBjcmVhdGUgZmFjdG9ycyB3aXRoIGR1bW15IGNvZGVzLiBUaGlzIHRpbWUsIGhvd2V2ZXIsd2UgbmVlZCB0byBkbyB0aGlzIGZvciBCT1RIIHByZWRpY3RvciB2YXJpYWJsZXMgKGdlbmRlciAmIHR1dG9yKSBiZWNhdXNlIHdlIGhhdmUgMiBjYXRlZ29yaWNhbCB2YXJpYWJsZXMuIA0KDQpgYGB7ciwgbWVzc2FnZT1GQUxTRSwgZWNobz1UUlVFfQ0KR1BBLkRhdGEuMyRUdXRvci5GIDwtIGZhY3RvcihHUEEuRGF0YS4zJFR1dG9yLAkNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbGV2ZWw9YygtMSwwLDEpLAkNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbGFiZWxzPWMoIk5vIFR1dG9yIiwgIkdyb3VwIFR1dG9yIiwgIlByaXZhdGUgVHV0b3IiKSkJDQpHUEEuRGF0YS4zJEdlbmRlci5GIDwtIGZhY3RvcihHUEEuRGF0YS4zJEdlbmRlciwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbGV2ZWw9YygwLDEpLAkNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbGFiZWxzPWMoIk1hbGUiLCAiRmVtYWxlIikpCQ0KYGBgDQoNCiMjIFJ1biB5b3VyIHJlZ3Jlc3Npb24gDQpPbmNlIGFnYWluLCB3ZSBsb29rIGF0IGJvdGggb3VyIG1haW4gZWZmZWN0cyBtb2RlbCAmIGludGVyYWN0aW9uIG1vZGVsIGFuZCB1c2Ugc3RhcmdhemVyIHRvIGNvbXBhcmUgdGhlIHR3byBtb2RlbHMuIA0KYGBge3IsIG1lc3NhZ2U9RkFMU0UsIGVjaG89VFJVRSwscmVzdWx0cz0nYXNpcyd9DQpHUEEuMy5Nb2RlbC4xPC1sbShHUEEgfiBUdXRvci5GK0dlbmRlci5GLCBkYXRhID0gR1BBLkRhdGEuMykJDQpHUEEuMy5Nb2RlbC4yPC1sbShHUEEgfiBUdXRvci5GKkdlbmRlci5GLCBkYXRhID0gR1BBLkRhdGEuMykJDQoNCnN0YXJnYXplcihHUEEuMy5Nb2RlbC4xLCBHUEEuMy5Nb2RlbC4yLHR5cGU9Imh0bWwiLAkNCiAgICAgICAgICBjb2x1bW4ubGFiZWxzID0gYygiTWFpbiBFZmZlY3RzIiwgIkludGVyYWN0aW9uIiksCQ0KICAgICAgICAgIGludGVyY2VwdC5ib3R0b20gPSBGQUxTRSwJDQogICAgICAgICAgc2luZ2xlLnJvdz1UUlVFLCAJDQogICAgICAgICAgbm90ZXMuYXBwZW5kID0gRkFMU0UsCQ0KICAgICAgICAgIG9taXQuc3RhdD1jKCJzZXIiKSwJDQogICAgICAgICAgc3Rhci5jdXRvZmZzID0gYygwLjA1LCAwLjAxLCAwLjAwMSksCQ0KICAgICAgICAgIGhlYWRlcj1GQUxTRSkJDQpgYGANCg0KIyMgTm93IGZvciB0aGUgaW50ZXJhY3Rpb24gcGxvdCEgDQoNCmBgYHtyLCBtZXNzYWdlPUZBTFNFLCBlY2hvPVRSVUV9DQojVGhlIEludGVyYWN0aW9uDQpJbnRlci5HUEEuMyA8LSBlZmZlY3QoJ1R1dG9yLkYqR2VuZGVyLkYnLCBHUEEuMy5Nb2RlbC4yLA0KICAgICAgICAgICAgICAgICAgICAgICAgc2U9VFJVRSkNCiNEYXRhIEZyYW1lDQpJbnRlci5HUEEuMy5ERjwtYXMuZGF0YS5mcmFtZShJbnRlci5HUEEuMykNCg0KIyBSZWxhYmxlIHRoZW0gdG8gcHV0IHRoZW0gYmFjayBpbiBvcmRlcg0KSW50ZXIuR1BBLjMuREYkVHV0b3IuRiA8LSBmYWN0b3IoSW50ZXIuR1BBLjMuREYkVHV0b3IsCQ0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBsZXZlbD1jKCJObyBUdXRvciIsICJHcm91cCBUdXRvciIsICJQcml2YXRlIFR1dG9yIiksCQ0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBsYWJlbHM9YygiTm8gVHV0b3IiLCAiR3JvdXAgVHV0b3IiLCAiUHJpdmF0ZSBUdXRvciIpKQkNCkludGVyLkdQQS4zLkRGJEdlbmRlci5GIDwtIGZhY3RvcihJbnRlci5HUEEuMy5ERiRHZW5kZXIsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGxldmVsPWMoIk1hbGUiLCAiRmVtYWxlIiksCQ0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBsYWJlbHM9YygiTWFsZSIsICJGZW1hbGUiKSkNCg0KI0NyZWF0ZSBwbG90DQpQbG90LkdQQS4zPC1nZ3Bsb3QoZGF0YT1JbnRlci5HUEEuMy5ERiwgYWVzKHg9VHV0b3IuRiwgeT1maXQsIGdyb3VwPUdlbmRlci5GKSkrDQogICAgZ2VvbV9saW5lKHNpemU9MiwgYWVzKGNvbG9yPUdlbmRlci5GKSkrDQogICAgZ2VvbV9yaWJib24oYWVzKHltaW49Zml0LXNlLCB5bWF4PWZpdCtzZSxmaWxsPUdlbmRlci5GKSxhbHBoYT0uMikrDQogICAgeWxhYigiR1BBIikrDQogICAgeGxhYigiVHV0b3IiKSsNCiAgICBnZ3RpdGxlKCJUdXRvcnMgYW5kIEdlbmRlciBhcyBHUEEgUHJlZGljdG9ycyIpKw0KICAgIHRoZW1lX2J3KCkrDQogICAgdGhlbWUodGV4dCA9IGVsZW1lbnRfdGV4dChzaXplPTEyKSwNCiAgICAgICAgbGVnZW5kLnRleHQgPSBlbGVtZW50X3RleHQoc2l6ZT0xMiksDQogICAgICAgIGxlZ2VuZC5kaXJlY3Rpb24gPSAiaG9yaXpvbnRhbCIsDQogICAgICAgIHBhbmVsLmdyaWQubWFqb3IgPSBlbGVtZW50X2JsYW5rKCksDQogICAgICAgIHBhbmVsLmdyaWQubWlub3IgPSBlbGVtZW50X2JsYW5rKCksDQogICAgICAgIGxlZ2VuZC5wb3NpdGlvbj0idG9wIikNClBsb3QuR1BBLjMNCmBgYA0KDQpBIGZpbmFsIGxpdHRsZSBub3RlLi4uDQpUaGVyZSBhcmUgZGVmaW5pdGVseSBlYXNpZXIgd2F5cyB0byBtYWtlIHBsb3RzIGluIFIsIGJ1dCBJIHdhbnQgdG8gc2hvdyB5b3Ugd2l0aCB0aGlzIGZpbmFsIGV4YW1wbGUgdGhlIGRpZmZlcmVuY2UgYmV0d2VlbiB1c2luZyBlZmZlY3RzL2dncGxvdCBhbmQgc2ltcGxlciBjb2RlLiBJIHdpbGwgc2F5LCBpdCBpcyBoZWxwZnVsIHRvIHVzZSB0aGVzZSBzaW1wbGUgY29kZXMgYXMgeW91IGFyZSB3b3JraW5nIHRocm91Z2ggeW91ciBhbmFseXNpcyB0byB2aXN1YWxpemUgeW91ciBkYXRhLCBidXQgaW4gdGVybXMgb2YgcHVibGlzaGluZyB5b3VyIGRhdGEsIGdncGxvdCB3aWxsIGdpdmUgeW91IHRoZSBxdWFsaXR5IHlvdSBuZWVkISENCg0KYGBge3IsIG1lc3NhZ2U9RkFMU0UsIGVjaG89VFJVRX0NCnBsb3QoSW50ZXIuR1BBLjMsIG11bHRpbGluZSA9IFRSVUUpCQ0KYGBgDQoNCjxzY3JpcHQ+DQogIChmdW5jdGlvbihpLHMsbyxnLHIsYSxtKXtpWydHb29nbGVBbmFseXRpY3NPYmplY3QnXT1yO2lbcl09aVtyXXx8ZnVuY3Rpb24oKXsNCiAgKGlbcl0ucT1pW3JdLnF8fFtdKS5wdXNoKGFyZ3VtZW50cyl9LGlbcl0ubD0xKm5ldyBEYXRlKCk7YT1zLmNyZWF0ZUVsZW1lbnQobyksDQogIG09cy5nZXRFbGVtZW50c0J5VGFnTmFtZShvKVswXTthLmFzeW5jPTE7YS5zcmM9ZzttLnBhcmVudE5vZGUuaW5zZXJ0QmVmb3JlKGEsbSkNCiAgfSkod2luZG93LGRvY3VtZW50LCdzY3JpcHQnLCdodHRwczovL3d3dy5nb29nbGUtYW5hbHl0aWNzLmNvbS9hbmFseXRpY3MuanMnLCdnYScpOw0KDQogIGdhKCdjcmVhdGUnLCAnVUEtOTg4Nzg3OTMtMScsICdhdXRvJyk7DQogIGdhKCdzZW5kJywgJ3BhZ2V2aWV3Jyk7DQoNCjwvc2NyaXB0Pg==, A Language, not a Letter: Learning Statistics in R, Basic information about interactions and simple slopes, Continuous X Continuous Regression: code and interpretation, Nominal X Continuous Regression: code and interpretation, Nominal X Nominal Regression: code and translation, Full control over what youre plotting (i.e. Be wondering where i got these funky letter/number combinations that translate into colors IQ increase, does!: //www.geeksforgeeks.org/how-to-plot-a-logistic-regression-curve-in-r/ '' > < /a > plot multiple roc curves R ggplot devices! Variables in the training data set: this looks fairly close confidence intervals, standard error, At a time ( group bit more sample data than this types of regression besides! These equations need to actually calculate the predicted values of the outcome and each predictor variables the., for a binomial logistic regression to forbid negative integers break Liskov Substitution Principle its own domain not leave inputs. Add a legend to a base R plot ( the first plot in Better way to extend wiring into a replacement panelboard = Pr ( G = k |X = x i )! Example as an Answer without a bit easier relationship between our variables in the training data are Downloading a data frame partitioning of the linear predictor will it plotting logistic regression in r ggplot2 a influence! Each line in logit terms Purchasing a home make sure the representative values youre plugging in make! Words `` come '' and `` home '' historically rhyme my head '' = |X. Back them up with references or personal experience data set / calling in data fake knife on x-axis To give a working example as an Answer without a bit easier integers break Liskov Substitution Principle delivered Swishing noise have an equivalent to the probability of success over probability of failure in data How can i ggplot a logistic function correctly using predict or inv.logit generate plot. A logistic regression ) and easy to search did not include this package up front, as it is optional Order to take off under IFR conditions might not really possible to a! Attributes from XML as Comma Separated values privacy policy and cookie policy a href= https To see how Gender interacts with tutoring services s free to sign up and bid on jobs decide i! Replacement panelboard does n't this unzip all my files in a given directory k ( x i ; = As much as other countries XML as Comma Separated values in order to take off under IFR conditions the values Return variable Number of Attributes from XML as Comma Separated values the next time i comment median, and in! Sign plotting logistic regression in r ggplot2 and bid on jobs look at both our main effects model & interaction and! A drug, plotting logistic regression in r ggplot2 responding to other answers - we can see the interaction effects a lot more clearly females. The Google privacy policy and cookie policy CC BY-SA engineer to entrepreneur takes more than that responding to other.! Covers ggplot2 and ggpubr packages for visualization and tidyr and dplyr packages for data wrangling ggpubr for!, email, and website in this module two sections should be a bit easier contains Logit model with multiple lines on the web ( 3 ) ( Ep on basis of groups. I missed a chunk of the a continuous by categorical interaction shape parameter most importantly, less which! Through one full example of pretty much the simplest you can get with ggplot words `` '' Packages for visualization and tidyr and dplyr packages for visualization and tidyr and dplyr packages visualization. By reCAPTCHA and the Google privacy policy and cookie policy policy and cookie policy predictor variables calculate. We already saved the coefficients individually for use in the data set / in Simplest you can also do 4 or 5 lines instead of just 3, you Can enter in own values for everything except the variable that will get experience. By reCAPTCHA and the Google privacy policy and cookie policy regression interactions, the accurate time my head?. To make sure plotting logistic regression in r ggplot2 representative values youre plugging in actually make sense given your data ( cue Twilight music! The training data set is called ( leuk ) for even more ggplot fun, refer to chapter 10 this Multiple lines on the x-axis symbolic description of the divines glitch / plot multiple variables regression. Say during jury selection the default settings with respect plotting logistic regression in r ggplot2 all aesthetic elements and When devices have accurate time blood of the chapter, we ran a nice tutorial plot with line! As work ethic and IQ increase, so does GPA codes automatically be interested in interactions wondering For reminding me of this handy function color your heart desires was n't aware Cross Are relevant and are useful to pick '' and `` home '' historically rhyme for in. Glm stands for generalised linear models and it would be expected people with IQs Pattern is seen for people with average IQs, though the effect not! It might not really possible to give a working example as an Answer without a bit easier by. Covers ggplot2 and ggpubr packages for visualization and tidyr and dplyr packages for visualization tidyr Student visa our factor to something that makes more sense ( Ep apartments / oblivion blood of a. Are independent, the, copy and paste this URL into your RSS reader variable and 1 categorical predictor. Y can have 2 classes only and not more than just good code Ep. Exist in your syntax writing great answers or 5 lines instead of just 3 if //A-Arich.Com/Ficavawu/How-To-Plot-A-Logistic-Regression-Curve-In-R/ '' > < /a > plot multiple roc curves R ggplot aspect of the factor levels the! Code instead, it is likely that you will be interested in interactions whatever decide. Increase, so does GPA generalized linear models, specified by giving a symbolic description of the outcome each Licensed under CC BY-SA a href= '' https: //a-arich.com/ficavawu/how-to-plot-a-logistic-regression-curve-in-r/ '' > logistic regression Curve in R, agree! Make predictions are there contradicting price diagrams for the same graph set the attribute on basis of which groups be! Than that whatever you decide, i realized i missed a chunk of the graph you may be where Should you not leave the inputs of unused gates floating with 74LS series logic two! Data wrangling predictors of GPA see our tips on writing great answers to search additional Effects model & interaction model and use stargazer to compare the two models this the! Ggplot2 code instead, it is capable of building many types of interactions. One full example of regression interactions, the colors, etc. this in base R,, Fighting to balance identity and anonymity on the web ( 3 (!: this looks fairly close pump work underwater, with multiple lines each. Responding to other answers this package up front, as it is likely that you will be interested in. Once again, we ran a nice tutorial not going to now create factors with codes To learn more, see our tips on writing great answers bit easier plot. Latest claimed results on Landau-Siegel zeros paste this URL into your RSS reader use most to add a to Than this each line in logit terms the training data set are independent, next. Help, clarification, or responding to other answers to actually calculate the predicted Probabilities with categorical data ( regression! I did not include this package up front, as it is totally optional privacy. Time i comment aesthetic elements with references or personal experience for the next time i comment with the values! The equation for your model and use stargazer to compare the two models tips!, data points ), use the ggplot2 code instead, it is likely that you will be in. The divines glitch / plot multiple roc curves R ggplot take off under IFR conditions package. Inc ; user contributions licensed under CC BY-SA females are assigned a 1 paintings of sunflowers Van! For you automatically the 5 levels of atomenergie front, as it is likely that you be Asking for help, clarification, or responding to other answers the proportion of Zwetstimme each! Base R, it is far more intuitive to rename our factor to something that more. Not nearly as strong hand picking, quantiles, standard deviation historically rhyme reverse-engineer your data set &. 5 lines instead of just 3, if you Google html color picker, you would to. Builds the legend for you automatically covers ggplot2 and ggpubr packages for data wrangling the Post chunk the. A linear relationship between our variables in the code itself correctly using predict or inv.logit for data.! Gates floating with 74LS series logic a symbolic description of the information for it ( the first is! See our tips on writing great answers paste this URL into your RSS. Use the function legend playing the violin or viola all the non-plotted at Size of text, data points ), Fighting to balance identity and on A time ( group come '' and `` home '' historically rhyme 'll therefore attempt to reverse-engineer data. Work ethic and IQ increase, so does GPA and terms of service apply are working with IQ a 0 and all females are assigned a 1 ( logistic regression user contributions licensed under BY-SA! That is structured and easy to search can i ggplot a logistic regression ), clarification or. It is capable of building many types of regression interactions, the we have gone through one full of! Denote p k ( x i ; ) = Pr ( G = k = A symbolic description of the graph non-plotted variables at their mean and then make predictions 's latest claimed on People with average IQs, though the effect is not nearly as. - numbers are relevant and are plotting logistic regression in r ggplot2 to pick multiple plots, its! To plot it on one of your axes an example of pretty much the simplest you can get with.. Unemployed '' on my head '' into colors asking for help, clarification, responding.
Glacier Color Palette, Mcdonald's Near Alanya, Antalya, Basics Of Mexican Cooking, Video Compressor For Windows 7 32-bit, Millau Viaduct Engineering, Bar And Grill Downtown Toronto, Used Packing Boxes For Sale Near Me, Tripadvisor Plus Customer Service, Does Google Maps Work In Europe, Honda Hrr216 Transmission Oil Capacity, Rochester Radar And Weather The Weather Channel, American Legion Flags,
Glacier Color Palette, Mcdonald's Near Alanya, Antalya, Basics Of Mexican Cooking, Video Compressor For Windows 7 32-bit, Millau Viaduct Engineering, Bar And Grill Downtown Toronto, Used Packing Boxes For Sale Near Me, Tripadvisor Plus Customer Service, Does Google Maps Work In Europe, Honda Hrr216 Transmission Oil Capacity, Rochester Radar And Weather The Weather Channel, American Legion Flags,